Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Metab ; 34: 1-15, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32180550

RESUMO

OBJECTIVE: Estrogen receptor-α (ERα) is a nuclear receptor family member thought to substantially contribute to the metabolic regulation of skeletal muscle. However, previous mouse models utilized to assess the necessity of ERα signaling in skeletal muscle were confounded by altered developmental programming and/or influenced by secondary effects, making it difficult to assign a causal role for ERα. The objective of this study was to determine the role of skeletal muscle ERα in regulating metabolism in the absence of confounding factors of development. METHODS: A novel mouse model was developed allowing for induced deletion of ERα in adult female skeletal muscle (ERαKOism). ERαshRNA was also used to knockdown ERα (ERαKD) in human myotubes cultured from primary human skeletal muscle cells isolated from muscle biopsies from healthy and obese insulin-resistant women. RESULTS: Twelve weeks of HFD exposure had no differential effects on body composition, VO2, VCO2, RER, energy expenditure, and activity counts across genotypes. Although ERαKOism mice exhibited greater glucose intolerance than wild-type (WT) mice after chronic HFD, ex vivo skeletal muscle glucose uptake was not impaired in the ERαKOism mice. Expression of pro-inflammatory genes was altered in the skeletal muscle of the ERαKOism, but the concentrations of these inflammatory markers in the systemic circulation were either lower or remained similar to the WT mice. Finally, skeletal muscle mitochondrial respiratory capacity, oxidative phosphorylation efficiency, and H2O2 emission potential was not affected in the ERαKOism mice. ERαKD in human skeletal muscle cells neither altered differentiation capacity nor caused severe deficits in mitochondrial respiratory capacity. CONCLUSIONS: Collectively, these results suggest that ERα function is superfluous in protecting against HFD-induced skeletal muscle metabolic derangements after postnatal development is complete.


Assuntos
Receptor alfa de Estrogênio/metabolismo , Insulina/metabolismo , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Animais , Receptor alfa de Estrogênio/deficiência , Feminino , Humanos , Camundongos , Camundongos Knockout , Músculo Esquelético/citologia
3.
Biochem J ; 476(10): 1521-1537, 2019 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-31092703

RESUMO

Alterations to branched-chain keto acid (BCKA) oxidation have been implicated in a wide variety of human diseases, ranging from diabetes to cancer. Although global shifts in BCKA metabolism-evident by gene transcription, metabolite profiling, and in vivo flux analyses have been documented across various pathological conditions, the underlying biochemical mechanism(s) within the mitochondrion remain largely unknown. In vitro experiments using isolated mitochondria represent a powerful biochemical tool for elucidating the role of the mitochondrion in driving disease. Such analyses have routinely been utilized across disciplines to shed valuable insight into mitochondrial-linked pathologies. That said, few studies have attempted to model in vitro BCKA oxidation in isolated organelles. The impetus for the present study stemmed from the knowledge that complete oxidation of each of the three BCKAs involves a reaction dependent upon bicarbonate and ATP, both of which are not typically included in respiration experiments. Based on this, it was hypothesized that the inclusion of exogenous bicarbonate and stimulation of respiration using physiological shifts in ATP-free energy, rather than excess ADP, would allow for maximal BCKA-supported respiratory flux in isolated mitochondria. This hypothesis was confirmed in mitochondria from several mouse tissues, including heart, liver and skeletal muscle. What follows is a thorough characterization and validation of a novel biochemical tool for investigating BCKA metabolism in isolated mitochondria.


Assuntos
Trifosfato de Adenosina/metabolismo , Bicarbonatos/metabolismo , Cetoácidos/metabolismo , Mitocôndrias/metabolismo , Consumo de Oxigênio , Animais , Masculino , Camundongos , Especificidade de Órgãos , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...